Tuesday 17 August 2010

oscillometrics

The oscillometric method was first demonstrated in 1876 and involves the observation of oscillations in the sphygmomanometer cuff pressure which are caused by the oscillations of blood flow, i.e., the pulse.The electronic version of this method is sometimes used in long-term measurements and general practice. It uses a sphygmomanometer cuff, like the auscultatory method, but with an electronic pressure sensor (transducer) to observe cuff pressure oscillations, electronics to automatically interpret them, and automatic inflation and deflation of the cuff. The pressure sensor should be calibrated periodically to maintain accuracy.
Oscillometric measurement requires less skill than the auscultatory technique and may be suitable for use by untrained staff and for automated patient home monitoring.
The cuff is inflated to a pressure initially in excess of the systolic arterial pressure and then reduced to below diastolic pressure over a period of about 30 seconds. When blood flow is nil (cuff pressure exceeding systolic pressure) or unimpeded (cuff pressure below diastolic pressure), cuff pressure will be essentially constant. It is essential that the cuff size is correct: undersized cuffs may yield too high a pressure; oversized cuffs yield too low a pressure. When blood flow is present, but restricted, the cuff pressure, which is monitored by the pressure sensor, will vary periodically in synchrony with the cyclic expansion and contraction of the brachial artery, i.e., it will oscillate. The values of systolic and diastolic pressure are computed, not actually measured from the raw data, using an algorithm; the computed results are displayed.
Oscillometric monitors may produce inaccurate readings in patients with heart and circulation problems, which include arterial sclerosis, arrhythmia, preeclampsia, pulsus alternans, and pulsus paradoxus.
In practice the different methods do not give identical results; an algorithm and experimentally obtained coefficients are used to adjust the oscillometric results to give readings which match the auscultatory results as well as possible. Some equipment uses computer-aided analysis of the instantaneous arterial pressure waveform to determine the systolic, mean, and diastolic points. Since many oscillometric devices have not been validated, caution must be given as most are not suitable in clinical and acute care settings.
The term NIBP, for non-invasive blood pressure, is often used to describe oscillometric monitoring equipment.
For some patients, BP measurements taken in a doctor's office may not correctly characterize their typical BP. In up to 25% of patients, the office measurement is higher than their typical BP. This type of error is called white-coat hypertension (WCH) and can result from anxiety related to an examination by a health care professional. The misdiagnosis of hypertension for these patients can result in needless and possibly harmful medication. WCH can be reduced (but not eliminated) with automated BP measurements over 15 to 20 minutes in a quiet part of the office or clinic.
Debate continues regarding the significance of this effect.[citation needed] Some reactive patients will react to many other stimuli throughout their daily lives and require treatment. In some cases a lower BP reading occurs at the doctor's office.
blood pressure devices that take readings every half hour throughout the day and night have been used for identifying and mitigating measurement problems like white-coat hypertension. Except for sleep, home monitoring could be used for these purposes instead of ambulatory blood pressure monitoring. Home monitoring may be used to improve hypertension management and to monitor the effects of lifestyle changes and medication related to BP. Compared to ambulatory blood pressure measurements, home monitoring has been found to be an effective and lower cost alternative.
Aside from the white-coat effect, BP readings outside of a clinical setting are usually slightly lower in the majority of people. The studies that looked into the risks from hypertension and the benefits of lowering BP in affected patients were based on readings in a clinical environment.
When measuring BP, an accurate reading requires that one not drink coffee, smoke cigarettes, or engage in strenuous exercise for 30 minutes before taking the reading. A full bladder may have a small effect on BP readings; if the urge to urinate exists, one should do so before the reading. For 5 minutes before the reading, one should sit upright in a chair with one's feet flat on the floor and with limbs uncrossed. The BP cuff should always be against bare skin, as readings taken over a shirt sleeve are less accurate. During the reading, the arm that is used should be relaxed and kept at heart level, for example by resting it on a table.

No comments:

Post a Comment